MATH 7B - Sample Final

This test is in two parts. On part one, you may not use a calculator; on part two, a calculator is necessary. When you complete part one, you turn it in and get part two. Once you have turned in part one, you may not go back to it.

PART ONE - NO CALCULATORS ALLOWED

(1) Find each of the following:
(Note: answers to inverse trig. problems should be in radians, not degrees)
(a) $\sin ^{-1}(-1)=$ \qquad (b) $\tan ^{-1}(0)=$ \qquad
(c) $\tan ^{-1}\left(-\frac{1}{\sqrt{3}}\right)=$ \qquad (d) $\sin ^{-1}\left(\frac{1}{2}\right)=$ \qquad
(e) $\tan 330^{\circ}$ \qquad (f) $\cos ^{-1}\left(\frac{-\sqrt{2}}{2}\right)=$
(g) $\sec \left(\frac{5 \pi}{6}\right)=\ldots-\infty$
(h) $\csc (\pi)=$ \qquad
i) $\cos ^{-1}\left(\cos \left(\frac{3 \pi}{2}\right)\right)=$ \qquad (j) $\tan \left(\tan ^{-1}(1 / 3)\right)=$ \qquad
(2) Fill in the blank to complete the identity.
(a) $\sin 2 \theta=$ \qquad
(b) $\cos ^{2} x=$ \qquad
(c) $\sin (\theta / 2)=$ \qquad
(d) $\cos (\alpha+\beta)=$

MATH 7B - Sample Finall Exam - Part Two

Fill in the blanks. In problems 1-7 fill in the blank with the most appropriate answer
(1) $\sin (-\theta)=$ \qquad
(2) The graph of the polar curve $r=4 \sin \theta$ is a \qquad
(3) $\left|\begin{array}{cc}-5 & 3 \\ 2 & -7\end{array}\right|=$
(4) The period of $f(x)=\tan (3 \pi x)$ is \qquad
(5) The range of $f(x)=\cos ^{-1} x$ is \qquad
(6) The graph of $x^{2}+5 y^{2}+4 x+10 y-2=0$ is a/an \qquad
(7) The range of $f(x)=\tan x$ is \qquad
(8) Convert the polar point $(7,11 \pi / 6)$ to rectangular coordinates \qquad
(9) Given the following figures, find:

(a) $\cos \theta=$ \qquad
(c) $\sin \theta=$ \qquad
(e) $\sin t=$ \qquad
(b) $\theta \approx$ \qquad degrees
(d) $\theta \approx$ \qquad degrees
(f) $\theta \approx$ \qquad degrees
(10) Given the point $(-4,-4)$ in rectangular coordinates, find two different polar representations; one with $r>0$, the other with $r<0$.
(11) Given the following matrices:
$A=\left[\begin{array}{ll}2 & -1 \\ 3 & -5\end{array}\right] \quad B=\left[\begin{array}{ccc}3 & 1 & 5 \\ 0 & 4 & 3 \\ 1 & -2 & 3\end{array}\right] \quad C=\left[\begin{array}{cc}1 & -3 \\ 3 & 7\end{array}\right] \quad$ Find the following, if possible. (If not possible, say so.)
(a) A^{-1}
(b) AC
(e) $\operatorname{det}(B)$
(12) SOLVE the following equations: $0 \leq x<2 \pi$
(a) $\sin 2 x=3 \sin x$
(b) $\cos ^{2}(3 x)-1=0$
(13) Given $\csc \alpha=-5 / 4, \pi<\alpha<\frac{3 \pi}{2}$, and $ß=\sin ^{-1}(2 / 3)$,

Find:
a) $\sin \left(\frac{\alpha}{2}\right)$
b) $\tan 2 \beta$
c) $\cos (\alpha+\beta)$
(14) Verify the identity : $\frac{1-\sin \theta}{\cos \theta}+\frac{\cos \theta}{1-\sin \theta}=2 \sec \theta$
(15) Find an equation of the parabola having focus $(-6,0)$ and directrix $x=-12$.
(16) Use Gaussian Elimination OR Cramer's Rule to solve:
(no credit if requested method is not used)
$\left\{\begin{array}{c}3 x-y-z=8 \\ x+y-2 z=5 \\ 2 x-y+z=1\end{array}\right.$
(17) Graph the following function. Show work.

(18) Carefully sketch the graph of $9 x^{2}-16 y^{2}+72 x+96 y+144=0$, and find the following desired information. Label at least 2 points on your graph and show scale.

VERTICES: \qquad FOCI: \qquad

(19) Given the vectors $\mathbf{W}=\langle-4,-3\rangle$ and $\mathbf{V}=\langle 2,5\rangle$, find the following:
a) || W ||
b) w • v
c) Find the direction angle of \mathbf{w} (exactly) \qquad
d) The direction angle of v (exactly) \qquad
e) Find b so that $\langle b, 7>$ is orthogonal to W \qquad
f) Find the angle between w and v \qquad
(20) Given triangle ABC with $\mathrm{A}=50^{\circ}, \mathrm{B}=70^{\circ}$ and $\mathrm{b}=10$ inches, find the remaining parts.

Find all solutions to the following equations.

(21) $3 \tan ^{2} \mathrm{x}-\sec ^{2} \mathrm{x}-5=0$
(22) $\cos (2 x)=2+5 \cos x$
(23) A man looks up and sees an airplane flying in his direction at a level altitude of 2 miles. He watches the airplane for a few minutes. During that period of time he notices that the angle of elevation to the airplane changes from 45° to 60°. How far has the plane traveled in that time?
(24) An airplane is traveling at a constant airspeed of 450 mph in the direction $\mathrm{N} 60^{\circ} \mathrm{W}$. If wind is blowing directly northward at a rate of 50 mph , what is the actual speed and direction of the airplane relative to the ground?

